加入收藏 | 设为首页 | 会员中心 | 我要投稿 宁德站长网 (https://www.0593zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

谷歌等机构耗时十年重建突触级果蝇半脑

发布时间:2020-01-30 20:43:57 所属栏目:动态 来源:机器之心
导读:(原标题:25000个神经元,2000万个突触,谷歌等机构耗时十年重建突触级果蝇半脑) 生物科学家研究基因网络,社会科学家研究社会网络,那神经科学家自然研究神经网络。研究复杂系统的「网络」是描述系统的基本方式。 长期以来,大脑神经网络的工作方式一直
(原标题:25000个神经元,2000万个突触,谷歌等机构耗时十年重建突触级果蝇半脑)

生物科学家研究基因网络,社会科学家研究社会网络,那神经科学家自然研究神经网络。研究复杂系统的「网络」是描述系统的基本方式。

谷歌等机构耗时十年重建突触级果蝇半脑

长期以来,大脑神经网络的工作方式一直是一个热门研究话题,近年大热的人工神经网络也是受到大脑神经元的启发才创建的。 尝试重建大脑(使用精细的成像技术绘制大脑物理路径)是连接组学的一个方向,也是神经科学家对揭示大脑工作方式的一种探索。由于人类大脑过于复杂,研究者们尝试从果蝇等较为简单的生物入手,试图重建果蝇大脑的完整神经连接图。人类大脑有1000亿个神经元,果蝇大脑只有10万左右。 去年8月,谷歌宣布,他们用数千块 GPU 自动重建了果蝇大脑的完整神经图,像素高达40万亿。遗憾的是,当时的重建结果没有识别突触,因此算不上真正的神经图。 但就在昨天,谷歌与霍华德·休斯医学研究所 Janelia 研究园区的 FlyEM 研究团队联合发布了他们的最新进展——一个拥有突触级别连接的果蝇半脑连接图。这是迄今为止人类绘制出的最大的突触级别大脑连接图。谷歌等机构耗时十年重建突触级果蝇半脑这个新的连接图包含25000个神经元、2000万个连接,大约相当于果蝇大脑体积的1/3,但这1/3影响力不容小觑。因为这些部分包含与学习、记忆、嗅觉、导航等功能相关的重要区域。谷歌等机构耗时十年重建突触级果蝇半脑果蝇半脑的一些统计信息,绿色部分表示成像和重建的核心脑域。当前最大包含2.5万个神经元,它们的突触连接数量达到2千万。 谷歌研究科学家 Viren Jain 表示,「这将是我们第一次真正细致入微地观察突触数量达10万级别的神经系统的组织结构。」有了这份详尽的神经图,研究者们将能够解答大脑为何运行得如此之快。「这项研究将改变神经科学的研究方式。」 该研究进展是连接组学领域的一个里程碑。在此之前,只有一种单一生物体——「秀丽隐杆线虫(C. elegans)」的大脑曾经被如此细致地描绘。 一直以来,「连接组学」在科学界毁誉参半。支持者认为这门学问可以揭示大脑物理层面与特定行为的关系,有助于实现神经科学的关键目标;不支持的人觉得绘制神经元图耗费了大量精力,这些研究资源本应放到更重要的领域中去。 为了完成重建工作,研究者需要完成以下工作: 1. 借助显微镜获取果蝇大脑中神经元的清晰图像;2. 借助算法将这些图像对齐并重新组合在一起形成3D 图像;3. 经过人工校对形成准确的重建结果;4. 利用机器学习算法自动监测出神经元之间的突触来完成重建。 在这个过程中,每个步骤都困难重重。为了克服这些困难,研究人员已经努力了近十年。 如何获取果蝇大脑神经元的清晰图像? 由于果蝇大脑的体积与一颗罂粟种子类似,所以准确地描述出果蝇大脑中10万个神经元是一项非常大的挑战。此外,很多微生物学家也质疑获取果蝇大脑数据的价值。所以,描述果蝇电脑神经元及其之间的连接始终是一项难题。 首先,研究人员必须借助于显微镜来获取高分辨率的大脑图像,然后为每个神经元绘制在两个半脑中展开的神经联结。就像为人类基因组排序一样,完成相应的工作需要技术创新和大量的人力资源。 那么这样就迎来了第一项难题:如何获取果蝇大脑中每个神经元的清晰图像? 利用显微镜实现果蝇大脑及神经元成像 如下图所示,在一个安静的房间里,八台巨大的显微镜正准备生成果蝇大脑的图像。并且,图像收集的过程不受任何外力的影响。 这些显微镜原本在设计时想要几分钟或几小时内捕捉到数据。但是,如要获得完整的果蝇大脑图像,一台显微镜需要持续运行数月或数年。现在,显微镜能够连续不断地生成清晰的图像,并显示果蝇大脑中错综复杂的神经元。此外,如果出现任何故障,显微镜可以自动停止数据收集并发出 SOS 信号。谷歌等机构耗时十年重建突触级果蝇半脑果蝇大脑图像所使用的显微镜。 在成像过程中,谷歌研究人员使用了聚焦离子束扫描电子显微镜(FIB-SEM)的技术,即通过聚焦离子束来击碎果蝇脑组织。 接着计算机程序将这些图像拼接对齐,生成果蝇大脑的3D 展示图。

用于制作「线路图」(wiring diagram)的图像全部来自一只雌果蝇,这些图像已经收集了起来。但是,随着显微镜功能的提升,它们现在也可以从雄果蝇的大脑中收集数据了,并且是要捕捉整个中枢神经系统。 如何得到准确的重建结果? 克服半脑连接组生成中的挑战需要大量研究人员数以十年的合作研究和开发。在珍妮莉亚研究园区,研究人员曾开发出了一种新方法,为果蝇大脑染色,再将组织分割为20微米的厚片。接着使用聚焦离子束扫描为每个厚片生成8x8x8nm^3像素的立体图像。之后利用计算方法将原始数据拼接和对齐到一个连贯的26万亿像素的3D 体积中。 但是,如果果蝇大脑中的神经元没有精确的3D 重建,则基于上述类型的成像数据不可能生成连接组。 在生成半脑连接组的过程中,谷歌选择与 Janelia 研究园区的 FlyEM 团队展开合作,并专注于自动化3D 重建以生成连接组。 经过技术的迭代发展,谷歌于2018年7月份提出了名为 Flood-filling 网络(FFN)的算法,并用于重建完整的半脑数据集。这种算法能够根据上下文图像和先验预测来决定如何扩展果蝇神经元的形状。谷歌在今日的博客中又详细描述了该网络。

在果蝇半脑数据中,利用 FFN 方法来分割或追踪神经元组成部分。 FFN 能够自动追踪果蝇大脑中的每个神经元,是首个能够给出足够准确重建结果的自动分割技术 虽然该算法大体上运行良好,但研究人员发现,当对齐效果不完美(连续切片中的图像内容不稳定)或切片和成像过程存在问题导致多个连续切片缺失时,该算法的性能会下降。 为了应对这些问题,研究人员将 FFN 网络与以下两个处理流程相结合:

· 其一,研究人员估计了3D 图像各位置切片之间的一致性,然后在 FFN 追踪每个神经元时确保各位置图像内容的稳定性;

· 其二,研究人员使用 Segmentation-Enhanced CycleGAN(SECGAN)计算出缺失切片的重构图。

(编辑:宁德站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!